当前,说到深度学习中的对抗,一般会有两个含义:一个是生成对抗网络(Generative Adversarial Networks,GAN),代表着一大类先进的生成模型;另一个则是跟对抗攻击、对抗样本相关的领域,它跟GAN相关,但又很不一样,它主要关心的是模型在小扰动下的稳健性。本博客里以前所涉及的对抗话题,都是前一种含义,而今天,我们来聊聊后一种含义中的“对抗训练”。

本文包括如下内容:

1、对抗样本、对抗训练等基本概念的介绍;

2、介绍基于快速梯度上升的对抗训练及其在NLP中的应用;

3、给出了对抗训练的Keras实现(一行代码调用);

4、讨论了对抗训练与梯度惩罚的等价性;

5、基于梯度惩罚,给出了一种对抗训练的直观的几何理解。

方法介绍 #

近年来,随着深度学习的日益发展和落地,对抗样本也得到了越来越多的关注。在CV领域,我们需要通过对模型的对抗攻击和防御来增强模型的稳健型,比如在自动驾驶系统中,要防止模型因为一些随机噪声就将红灯识别为绿灯。在NLP领域,类似的对抗训练也是存在的,不过NLP中的对抗训练更多是作为一种正则化手段来提高模型的泛化能力!

这使得对抗训练成为了NLP刷榜的“神器”之一,前有微软通过RoBERTa+对抗训练在GLUE上超过了原生RoBERTa,后有我司的同事通过对抗训练刷新了CoQA榜单。这也成功引起了笔者对它的兴趣,遂学习了一番,分享在此。

基本概念 #

要认识对抗训练,首先要了解“对抗样本”,它首先出现在论文《Intriguing properties of neural networks》之中。简单来说,它是指对于人类来说“看起来”几乎一样、但对于模型来说预测结果却完全不一样的样本,比如下面的经典例子:

对抗样本经典例子。来自论文《Explaining and Harnessing Adversarial Examples》

对抗样本经典例子。来自论文《Explaining and Harnessing Adversarial Examples》

理解对抗样本之后,也就不难理解各种相关概念了,比如“对抗攻击”,其实就是想办法造出更多的对抗样本,而“对抗防御”,就是想办法让模型能正确识别更多的对抗样本。所谓对抗训练,则是属于对抗防御的一种,它构造了一些对抗样本加入到原数据集中,希望增强模型对对抗样本的鲁棒性;同时,如本文开篇所提到的,在NLP中它通常还能提高模型的表现。

Min-Max #

总的来说,对抗训练可以统一写成如下格式
\begin{equation}\min_{\theta}\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\max_{\Delta x\in\Omega}L(x+\Delta x, y;\theta)\right]\label{eq:min-max}\end{equation}
其中$\mathcal{D}$代表训练集,$x$代表输入,$y$代表标签,$\theta$是模型参数,$L(x,y;\theta)$是单个样本的loss,$\Delta x$是对抗扰动,$\Omega$是扰动空间。这个统一的格式首先由论文《Towards Deep Learning Models Resistant to Adversarial Attacks》提出。

这个式子可以分步理解如下:

1、往属于$x$里边注入扰动$\Delta x$,$\Delta x$的目标是让$L(x+\Delta x, y;\theta)$越大越好,也就是说尽可能让现有模型的预测出错;

2、当然$\Delta x$也不是无约束的,它不能太大,否则达不到“看起来几乎一样”的效果,所以$\Delta x$要满足一定的约束,常规的约束是$\Vert\Delta x\Vert\leq \epsilon$,其中$\epsilon$是一个常数;

3、每个样本都构造出对抗样本$x+\Delta x$之后,用$(x + \Delta x, y)$作为数据对去最小化loss来更新参数$\theta$(梯度下降);

4、反复交替执行1、2、3步。

由此观之,整个优化过程是$\max$和$\min$交替执行,这确实跟GAN很相似,不同的是,GAN所$\max$的自变量也是模型的参数,而这里$\max$的自变量则是输入(的扰动量),也就是说要对每一个输入都定制一步$\max$。

快速梯度 #

现在的问题是如何计算$\Delta x$,它的目标是增大$L(x+\Delta, y;\theta)$,而我们知道让loss减少的方法是梯度下降,那反过来,让loss增大的方法自然就是梯度上升,因此可以简单地取
\begin{equation}\Delta x = \epsilon \nabla_x L(x, y;\theta)\end{equation}
当然,为了防止$\Delta x$过大,通常要对$\nabla_x L(x, y;\theta)$做些标准化,比较常见的方式是
\begin{equation}\Delta x = \epsilon \frac{\nabla_x L(x, y;\theta)}{\Vert \nabla_x L(x, y;\theta)\Vert}\quad\text{或}\quad \Delta x = \epsilon \text{sign}(\nabla_x L(x, y;\theta))\end{equation}
有了$\Delta x$之后,就可以代回式$\eqref{eq:min-max}$进行优化
\begin{equation}\min_{\theta}\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[L(x+\Delta x, y;\theta)\right]\end{equation}
这就构成了一种对抗训练方法,被称为Fast Gradient Method(FGM),它由GAN之父Goodfellow在论文《Explaining and Harnessing Adversarial Examples》首先提出。

此外,对抗训练还有一种方法,叫做Projected Gradient Descent(PGD),其实就是通过多迭代几步来达到让$L(x+\Delta x,y;\theta)$更大的$\Delta x$(如果迭代过程中模长超过了$\epsilon$,就缩放回去,细节请参考《Towards Deep Learning Models Resistant to Adversarial Attacks》。)。但本文不旨在对对抗学习做完整介绍,而且笔者认为它不如FGM漂亮有效,所以本文还是以FGM为重点。关于对抗训练的补充介绍,建议有兴趣的读者阅读富邦同学写的《功守道:NLP中的对抗训练 + PyTorch实现》

回到NLP #

对于CV领域的任务,上述对抗训练的流程可以顺利执行下来,因为图像可以视为普通的连续实数向量,$\Delta x$也是一个实数向量,因此$x+\Delta x$依然可以是有意义的图像。但NLP不一样,NLP的输入是文本,它本质上是one hot向量(如果还没认识到这一点,欢迎阅读《词向量与Embedding究竟是怎么回事?》),而两个不同的one hot向量,其欧氏距离恒为$\sqrt{2}$,因此对于理论上不存在什么“小扰动”。

一个自然的想法是像论文《Adversarial Training Methods for Semi-Supervised Text Classification》一样,将扰动加到Embedding层。这个思路在操作上没有问题,但问题是,扰动后的Embedding向量不一定能匹配上原来的Embedding向量表,这样一来对Embedding层的扰动就无法对应上真实的文本输入,这就不是真正意义上的对抗样本了,因为对抗样本依然能对应一个合理的原始输入。

那么,在Embedding层做对抗扰动还有没有意义呢?有!实验结果显示,在很多任务中,在Embedding层进行对抗扰动能有效提高模型的性能。

实验结果 #

既然有效,那我们肯定就要亲自做实验验证一下了。怎么通过代码实现对抗训练呢?怎么才能做到用起来尽可能简单呢?最后用起来的效果如何呢?

思路分析 #

对于CV任务来说,一般输入张量的shape是$(b,h,w,c)$,这时候我们需要固定模型的batch size(即$b$),然后给原始输入加上一个shape同样为$(b,h,w,c)$、全零初始化的Variable,比如就叫做$\Delta x$,那么我们可以直接求loss对$x$的梯度,然后根据梯度给$\Delta x$赋值,来实现对输入的干扰,完成干扰之后再执行常规的梯度下降。

对于NLP任务来说,原则上也要对Embedding层的输出进行同样的操作,Embedding层的输出shape为$(b,n,d)$,所以也要在Embedding层的输出加上一个shape为$(b,n,d)$的Variable,然后进行上述步骤。但这样一来,我们需要拆解、重构模型,对使用者不够友好。

不过,我们可以退而求其次。Embedding层的输出是直接取自于Embedding参数矩阵的,因此我们可以直接对Embedding参数矩阵进行扰动。这样得到的对抗样本的多样性会少一些(因为不同样本的同一个token共用了相同的扰动),但仍然能起到正则化的作用,而且这样实现起来容易得多。

代码参考 #

基于上述思路,这里给出Keras下基于FGM方式对Embedding层进行对抗训练的参考实现:

核心代码如下:

def adversarial_training(model, embedding_name, epsilon=1):
    """给模型添加对抗训练
    其中model是需要添加对抗训练的keras模型,embedding_name
    则是model里边Embedding层的名字。要在模型compile之后使用。
    """
    if model.train_function is None:  # 如果还没有训练函数
        model._make_train_function()  # 手动make
    old_train_function = model.train_function  # 备份旧的训练函数

    # 查找Embedding层
    for output in model.outputs:
        embedding_layer = search_layer(output, embedding_name)
        if embedding_layer is not None:
            break
    if embedding_layer is None:
        raise Exception('Embedding layer not found')

    # 求Embedding梯度
    embeddings = embedding_layer.embeddings  # Embedding矩阵
    gradients = K.gradients(model.total_loss, [embeddings])  # Embedding梯度
    gradients = K.zeros_like(embeddings) + gradients[0]  # 转为dense tensor

    # 封装为函数
    inputs = (model._feed_inputs +
              model._feed_targets +
              model._feed_sample_weights)  # 所有输入层
    embedding_gradients = K.function(
        inputs=inputs,
        outputs=[gradients],
        name='embedding_gradients',
    )  # 封装为函数

    def train_function(inputs):  # 重新定义训练函数
        grads = embedding_gradients(inputs)[0]  # Embedding梯度
        delta = epsilon * grads / (np.sqrt((grads**2).sum()) + 1e-8)  # 计算扰动
        K.set_value(embeddings, K.eval(embeddings) + delta)  # 注入扰动
        outputs = old_train_function(inputs)  # 梯度下降
        K.set_value(embeddings, K.eval(embeddings) - delta)  # 删除扰动
        return outputs

    model.train_function = train_function  # 覆盖原训练函数

定义好上述函数后,给Keras模型增加对抗训练就只需要一行代码了:

# 写好函数后,启用对抗训练只需要一行代码
adversarial_training(model, 'Embedding-Token', 0.5)

需要指出的是,由于每一步算对抗扰动也需要计算梯度,因此每一步训练一共算了两次梯度,因此每步的训练时间会翻倍。

效果比较 #

为了测试实际效果,笔者选了中文CLUE榜的两个分类任务:IFLYTEK和TNEWS,模型选择了中文BERT base。在CLUE榜单上,BERT base模型在这两个数据上的成绩分别是60.29%和56.58%,经过对抗训练后,成绩为62.46%、57.66%,分别提升了2%和1%!

$$\begin{array}{c|cc}
\hline
& \text{IFLYTEK} & \text{TNEWS} \\
\hline
\text{无对抗训练} & 60.29\% & 56.58\% \\
\text{加对抗训练} & 62.46\% & 57.66\% \\
\hline
\end{array}$$

训练脚本请参考:task_iflytek_adversarial_training.py

当然,同所有正则化手段一样,对抗训练也不能保证每一个任务都能有提升,但从目前大多数“战果”来看,它是一种非常值得尝试的技术手段。此外,BERT的finetune本身就是一个非常玄乎(靠人品)的过程,前些时间论文《Fine-Tuning Pretrained Language Models: Weight Initializations, Data Orders, and Early Stopping》换用不同的随机种子跑了数百次finetune实验,发现最好的结果能高出好几个点,所以如果你跑了一次发现没提升,不妨多跑几次再下结论。

延伸思考 #

在这一节中,我们从另一个视角对上述结果进行分析,从而推出对抗训练的另一种方法,并且得到一种关于对抗训练的更直观的几何理解。

梯度惩罚 #

假设已经得到对抗扰动$\Delta x$,那么我们在更新$\theta$时,考虑对$L(x+\Delta x, y;\theta)$的展开:
\begin{equation}\begin{aligned}&\min_{\theta}\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[L(x+\Delta x, y;\theta)\right]\\
\approx&\, \min_{\theta}\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[L(x, y;\theta)+\langle\nabla_x L(x, y;\theta), \Delta x\rangle\right]
\end{aligned}\end{equation}
对应的$\theta$的梯度为
\begin{equation}\nabla_{\theta}L(x, y;\theta)+\langle\nabla_{\theta}\nabla_x L(x, y;\theta), \Delta x\rangle\end{equation}
代入$\Delta x=\epsilon \nabla_x L(x, y;\theta)$,得到
\begin{equation}\begin{aligned}&\nabla_{\theta}L(x, y;\theta)+\epsilon\langle\nabla_{\theta}\nabla_x L(x, y;\theta), \nabla_x L(x, y;\theta)\rangle\\
=&\,\nabla_{\theta}\left(L(x, y;\theta)+\frac{1}{2}\epsilon\left\Vert\nabla_x L(x, y;\theta)\right\Vert^2\right)
\end{aligned}\end{equation}
这个结果表示,对输入样本施加$\epsilon \nabla_x L(x, y;\theta)$的对抗扰动,一定程度上等价于往loss里边加入“梯度惩罚
\begin{equation}\frac{1}{2}\epsilon\left\Vert\nabla_x L(x, y;\theta)\right\Vert^2\label{eq:gp}\end{equation}
如果对抗扰动是$\epsilon \nabla_x L(x, y;\theta)/\Vert \nabla_x L(x, y;\theta)\Vert$,那么对应的梯度惩罚项则是$\epsilon\left\Vert\nabla_x L(x, y;\theta)\right\Vert$(少了个$1/2$,也少了个2次方)。

事实上,这个结果不是新的,据笔者所知,它首先出现论文《Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients》里。只不过这篇文章不容易搜到,因为你一旦搜索“adversarial training gradient penalty”等关键词,出来的结果几乎都是WGAN-GP相关的东西。

几何图像 #

事实上,关于梯度惩罚,我们有一个非常直观的几何图像。以常规的分类问题为例,假设有$n$个类别,那么模型相当于挖了$n$个坑,然后让同类的样本放到同一个坑里边去:

分类问题就是挖坑,然后将同类样本放在同一个坑内

分类问题就是挖坑,然后将同类样本放在同一个坑内

梯度惩罚则说“同类样本不仅要放在同一个坑内,还要放在坑底”,这就要求每个坑的内部要长这样:

对抗训练希望每个样本都在一个“坑中坑”的坑底

对抗训练希望每个样本都在一个“坑中坑”的坑底

为什么要在坑底呢?因为物理学告诉我们,坑底最稳定呀,所以就越不容易受干扰呀,这不就是对抗训练的目的么?

“坑底”最稳定。受到干扰后依然在坑底附近徘徊,不容易挑出坑(跳出坑往往意味着分类错误)

“坑底”最稳定。受到干扰后依然在坑底附近徘徊,不容易挑出坑(跳出坑往往意味着分类错误)

那坑底意味着什么呢?极小值点呀,导数(梯度)为零呀,所以不就是希望$\Vert\nabla_x L(x,y;\theta)\Vert$越小越好么?这便是梯度惩罚$\eqref{eq:gp}$的几何意义了。类似的“挖坑”、“坑底”与梯度惩罚的几何图像,还可以参考《能量视角下的GAN模型(一):GAN=“挖坑”+“跳坑”》

L约束 #

我们还可以从L约束(Lipschitz约束)的角度来看梯度惩罚。所谓对抗样本,就是输入的小扰动导致输出的大变化,而关于输入输出的控制问题,我们之前在文章《深度学习中的L约束:泛化与生成模型》就已经探讨过。一个好的模型,理论上应该是“输入的小扰动导致导致输出的小变化”,而为了做到这一点,一个很常用的方案是让模型满足L约束,即存在常数$L$,使得
\begin{equation}\Vert f(x_1)-f(x_2)\Vert \leq L \Vert x_1 - x_2\Vert\end{equation}
这样一来只要两个输出的差距$\Vert x_1 - x_2\Vert$足够小,那么就能保证输出的差距也足够小。而《深度学习中的L约束:泛化与生成模型》已经讨论了,实现L约束的方案之一就是谱归一化(Spectral Normalization),所以往神经网络里边加入谱归一化,就可以增强模型的对抗防御性能。相关的工作已经被发表在《Generalizable Adversarial Training via Spectral Normalization》

美中不足的是,谱归一化是对模型的每一层权重都进行这样的操作,结果就是神经网络的每一层都满足L约束,这是不必要的(我们只希望整个模型满足L约束,不必强求每一层都满足),因此理论上来说L约束会降低模型表达能力,从而降低模型性能。而在WGAN系列模型中,为了让判别器满足L约束,除了谱归一化外,还有一种常见的方案,那就是梯度惩罚。因此,梯度惩罚也可以理解为一个促使模型满足L约束的正则项,而满足L约束则能有效地抵御对抗样本的攻击。

代码实现 #

既然梯度惩罚号称能有类似的效果,那必然也是要接受实验验证的了。相比前面的FGM式对抗训练,其实梯度惩罚实现起来还容易一些,因为它就是在loss里边多加一项罢了,而且实现方式是通用的,不用区分CV还是NLP。

Keras参考实现如下:

def sparse_categorical_crossentropy(y_true, y_pred):
    """自定义稀疏交叉熵
    这主要是因为keras自带的sparse_categorical_crossentropy不支持求二阶梯度。
    """
    y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
    y_true = K.cast(y_true, 'int32')
    y_true = K.one_hot(y_true, K.shape(y_pred)[-1])
    return K.categorical_crossentropy(y_true, y_pred)


def loss_with_gradient_penalty(y_true, y_pred, epsilon=1):
    """带梯度惩罚的loss
    """
    loss = K.mean(sparse_categorical_crossentropy(y_true, y_pred))
    embeddings = search_layer(y_pred, 'Embedding-Token').embeddings
    gp = K.sum(K.gradients(loss, [embeddings])[0].values**2)
    return loss + 0.5 * epsilon * gp


model.compile(
    loss=loss_with_gradient_penalty,
    optimizer=Adam(2e-5),
    metrics=['sparse_categorical_accuracy'],
)

可以看到,定义带梯度惩罚的loss非常简单,就两行代码而已。需要指出的是,梯度惩罚意味着参数更新的时候需要算二阶导数,但是Tensorflow和Keras自带的loss函数不一定支持算二阶导数,比如K.categorical_crossentropy支持而K.sparse_categorical_crossentropy不支持,遇到这种情况时,需要自定重新定义loss。

效果比较 #

还是前面两个任务,结果如下表。可以看到,梯度惩罚能取得跟FGM基本一致的结果。
$$\begin{array}{c|cc}
\hline
& \text{IFLYTEK} & \text{TNEWS} \\
\hline
\text{无对抗训练} & 60.29\% & 56.58\% \\
\text{加对抗训练} & 62.46\% & 57.66\% \\
\text{加梯度惩罚} & 62.31\% & 57.81\% \\
\hline
\end{array}$$

完整的代码请参考:task_iflytek_gradient_penalty.py

本文小结 #

本文简单介绍了对抗训练的基本概念和推导,着重讲了其中的FGM方法并给出了Keras实现,实验证明它能提高一些NLP模型的泛化性能。此外,本文还讨论了对抗学习与梯度惩罚的联系,并给出了梯度惩罚的一种直观的几何理解。

转载到请包括本文地址:http://vtvm.cn/archives/7234

更详细的转载事宜请参考:《大发1分快3-1分快3官方空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道大发1分快3-1分快3官方空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (2020, Mar 01). 《对抗训练浅谈:意义、方法和思考(附Keras实现) 》[Blog post]. Retrieved from http://vtvm.cn/archives/7234